Hadronic B Decays to Open Charm at BaBar

Jochen Schieck University of Maryland

for the BaBar Collaboration

European Physical Society International Europhysics Conference on High Energy Physics July 12-18 2001 Budapest

B to Double Charm decays

• Measurement of BR(B \rightarrow D^(*) D^(*) K)

• Measurement of BR($B^0 \rightarrow D^{(*)} D^{(*)}$)

Kinematic Variables

 $-p_B$

•Invariant mass of Beam energy and reconstructed B candidate momentum

* 2

$$\Delta E = E^*_{B0} - E^*_{beam}$$

ΔE :

•Energy of reconstructed B candidate minus beam energy in CMS

Decay $B \rightarrow D^{(*)} D^{(*)} K$

- study of $b \rightarrow c\overline{c}\overline{s}$ transition
 - Cs expected to hadronize dominant in $D_s^{(*)}$
 - **b** \rightarrow **c** \overline{cs} branching ratio from *BR*(B \rightarrow D_s) measurements alone inconsistent with theoretical predictions based on semileptonic decays
- Large *BR*($B \rightarrow D^{(*)} D^{(*)} K$) could resolve problem
 - Additional light quark pair popped out in the b →ccs decay
 - Could contribute significantly to overall
 b → ccs rate
 - External (color allowed) and internal (color suppressed) decay modes

Decay $B \rightarrow D^{(*)} D^{(*)} K$

- Previous observation by CLEO and Aleph
 - CLEO *: Total $B \rightarrow D^*D^{(*)}K^-$ of ~2%
 - Aleph ** : $Br(B \rightarrow D^{(*)}D^{(*)}K) = (7.1^{+2.5}_{-1.5}(stat)^{+0.9}_{-0.8}(syst))\%$

^{*}CLEO CONF 97-26 ** *Eur.Phys.J.***C4,**387-407(1998)

Event Selection $B \rightarrow D^{(*)} \: D^{(*)} \: K$

- Charmed meson reconstruction
 - $D^{*+} \rightarrow D^0 \pi^+$
 - $D^{*0} \rightarrow D^0 \pi^0, D^0 \gamma$
 - $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^+\pi^+$
- 'Tight' particle identification for single K
- Kinematic variables for signal/background separation
 - ΔE , m_{ES}
- Selection in case of multiple candidates

•
$$\chi^2_{Mass} = \sum \left(\frac{(\Delta)m_{D^{(*)}} - m_{PDG}}{\sigma_m} \right)^2$$

fit to m_{ES} distribution for signal and background estimation

14th July 2001

- The Standard Model predicts time-dependent CP-violating asymmetries in the decays $B^0 \rightarrow D^{(*)+}D^{(*)-}$ proportional to sin2 β
 - Independent measurement of sin2 β in these modes, compared to the measurement from B⁰ \rightarrow J/ ψ K_S, would provide a test of the Standard Model picture of *CP* violation

BUT:

•additional penguin contribution \rightarrow dilution of sin2 β

sin2 β shifted by the ratio of the tree and penguin contribution \rightarrow ratio has theoretical uncertainties ($\Delta\beta \sim 0.01$)

- •B⁰ decays to Vector-Vector final state
 - •CP-odd dilution from P-wave decay component
 - •Angular analysis can determine CP-even and CP-odd component of decay
- Previous branching fraction measurement (CLEO):

$$Br(B^0 \to D^{*+}D^{*-}) = (9.9^{+4.2}_{-3.3}(stat) \pm 1.2(syst)) \times 10^{-4}$$

*Phys.Rev.***D62**(2000)

8 Events

14th July 2001

$B \rightarrow D^{*+}D^{*-}$, Event Selection

- •D*+ Reconstruction
- •D*+ \rightarrow D⁰ π +, D+ π ⁰
- •Don't look at case where both D^* decay to $D^{\pm}\pi^0$
- • $D^0 \to K^-\pi^+, K^-\pi^+\pi^0, K^-\pi^+\pi^-\pi^+, K_S\pi^+\pi^-$
- $\bullet D^+ \rightarrow K^-\pi^+\pi^+, \, K_S\pi^+, \, K^-K^+\pi^+$
- •Use ΔE , M_{ES} and χ^2_{Mass} for signal/background separation

Conclusion

- Clear observation of $B \rightarrow D^{(*)}D^{(*)}K$ decay, three exclusive branching ratios including color suppressed decay $B^+ \rightarrow D^{*+}D^{*-}K^+$
 - Measurement of all excl. Branching ratios in preparation
- 32 fully reconstructed $B^0 \rightarrow D^{*+}D^{*-}$ events
 - Most precise branching ratio measurement
 - Angular analysis in preparation
 - expected $\sigma(\sin 2\beta)$ in $\mathbb{B}^0 \rightarrow \mathbb{D}^{*+}\mathbb{D}^{*-} 0.2-0.3 (100 \text{ fb}^{-1})$